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(57) ABSTRACT

Low cost storage for write once read rarely data is described.
In an embodiment a storage device comprises a plurality of
hard disk drives connected to a server via an interconnect
fabric. The storage device comprises a cooling system which
is only capable of cooling a first subset of the hard disk
drives and a power supply system which is only capable of
powering a second subset of the hard disk drives and in some
examples, the interconnect fabric may be only capable of
providing full bandwidth for a third subset of the hard disk
drives. Each subset may comprise only a small fraction of
hard disk drives. A control mechanism, which may be
implemented in software, is provided which controls which
hard disk drives are active at any time in order that the
constraints set by the cooling and power supply systems and
interconnect fabric are not violated.
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LOW COST STORAGE FOR RARELY READ
DATA

RELATED APPLICATIONS

This application is a continuation of and claims priority to
application Ser. No. 13/899,497, filed on May 21, 2013, and
entitled “LOW COST STORAGE FOR RARELY READ
DATA.” This application claims the benefit of the above-
identified application, and the disclosure of the above-
identified application is hereby incorporated by reference in
its entirety as if set forth herein in full.

BACKGROUND

There are large amounts of data which are written once to
a data storage device and then subsequently only read rarely
and examples include archival storage of email and second-
ary geo-distributed replicas of data. On the rare occasions
that this data is read, timely access is required and so use of
magnetic tape based solutions (where robotic arms fetch
tapes from a library and insert them into tape drive where
they are mechanically wound to the correct point), which are
typically used for cold storage, is not appropriate because of
the high access latency. Tapes can also be affected by
environmental conditions (e.g. humidity) and so durability
may be limited. Existing storage solutions which provide
low latency access are based on physical hard disks and solid
state drives; however these have a high power consumption
and are also expensive to buy.

The embodiments described below are not limited to
implementations which solve any or all of the disadvantages
of known storage solutions.

SUMMARY

The following presents a simplified summary of the
disclosure in order to provide a basic understanding to the
reader. This summary is not an extensive overview of the
disclosure and it does not identify key/critical elements or
delineate the scope of the specification. Its sole purpose is to
present a selection of concepts disclosed herein in a simpli-
fied form as a prelude to the more detailed description that
is presented later.

Low cost storage for write once read rarely data is
described. In an embodiment a storage device comprises a
plurality of hard disk drives connected to a server via an
interconnect fabric. The storage device comprises a cooling
system which is only capable of cooling a first subset of the
hard disk drives and a power supply system which is only
capable of powering a second subset of the hard disk drives
and in some examples, the interconnect fabric may be only
capable of providing full bandwidth for a third subset of the
hard disk drives. Each subset may comprise only a small
fraction of hard disk drives. A control mechanism, which
may be implemented in software, is provided which controls
which hard disk drives are active at any time in order that the
constraints set by the cooling and power supply systems and
interconnect fabric are not violated.

Many of the attendant features will be more readily
appreciated as the same becomes better understood by
reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read in light of the accompa-
nying drawings, wherein:
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FIG. 1 is a schematic diagram of an example storage
device;

FIG. 2 shows another schematic diagram of an example
storage device;

FIG. 3 shows a schematic diagram of a first example
interconnect fabric;

FIG. 4 shows a schematic diagram of a second example
interconnect fabric;

FIG. 5 is a flow diagram of an example method of
controlling accesses to a HDD;

FIG. 6 is a schematic diagram showing domains within a
storage device;

FIG. 7 is a schematic diagram showing an example group
construction that achieves maximal disjointness;

FIG. 8 is a schematic diagram showing a representation of
the HDDs within a storage device from above;

FIG. 9 is a schematic diagram showing a representation of
the HDDs within a storage device from above in a two server
scenario;

FIG. 10 shows flow diagrams of example methods of
writing data to a storage device;

FIG. 11 shows a schematic diagram illustrating differ-
ences between two of the methods shown in FIG. 10;

FIG. 12 shows a flow diagram of an example method of
scheduling read operations within a storage device;

FIG. 13 shows an example scheduling timeline for a
storage device;

FIG. 14 is a flow diagram of another example method of
reading data from the storage device; and

FIG. 15 illustrates an exemplary computing-based device
in which embodiments of the methods of controlling HDDs
described herein may be implemented.

Like reference numerals are used to designate like parts in
the accompanying drawings.

DETAILED DESCRIPTION

The detailed description provided below in connection
with the appended drawings is intended as a description of
the present examples and is not intended to represent the
only forms in which the present example may be constructed
or utilized. The description sets forth the functions of the
example and the sequence of steps for constructing and
operating the example. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

FIG. 1 is a schematic diagram of an example storage
device 100. The storage device 100 may be a rack-scale
device (with a standard rack form factor) or may have an
alternative form factor. The storage device comprises a large
number of hard disk drives (HDDs) 102 (e.g. over 1000
HDDs) and a server 104. Each HDD 102 comprises a platter
(or disc) which is spun at high speeds when active (i.e. when
data is being read or written). To reduce power consumption,
the platters can be spun down (i.e. stopped); however, there
is a latency associated with spinning up a platter and data
cannot be read or written whilst a platter is spun down. For
the purposes of the following description, this latency is
assumed to be around 10 seconds, although it will be
appreciated that the latency may be shorter or longer than
this.

An interconnect fabric 106 is provided within the device
which interconnects the HDDs 102 and the server 104.
Power is provided by a power supply system 108, which
although it is shown as a single block in FIG. 1 may be
distributed throughout the storage device 100. Cooling (for
the HDDs 102) is provided by a cooling system 110, which
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may for example be a forced air cooling system using one or
more fans to force (push or pull) air around the HDDs.

In the storage device 100, both the power supply system
108 and cooling system 110 are significantly underprovi-
sioned such that the storage device 100 cannot support all
the HDDs 102 being active (i.e. with their platters spinning)
at one time and instead, the power supply system 108 and
cooling system 110 can only support a small fraction (e.g.
10% or less and in one example 8.3%) of the HDDs 102
being active simultaneously. If all the HDDs 102 in the
storage device 100 were to start to spin their platters
simultaneously, it would result in failure of the storage
device 100 and consequently a mechanism is provided
within the storage device 100 to control the number of
HDDs 102 which are active at any one time. This mecha-
nism may be provided by software running on the server 104
(e.g. by a scheduler) and/or control logic 112 within the
storage device 100.

The underprovisioning of the power supply system 108
and the cooling system 110 within the storage device 100
(i.e. characteristics of the power supply system and cooling
system) set constraints on the number of HDDs 102 that can
be active at any time and these constraints may be referred
to as ‘hard constraints’ because if they are violated the
storage device 100 will (or is very likely to) fail. Dependent
on the design of the storage device 100, there may be one or
more other hard constraints and/or one or more soft con-
straints. Examples of soft constraints may include a band-
width constraint (e.g. a maximum bandwidth of an interface
to the server 104 from an external network or bandwidth
constraint within the interconnect fabric 106) and a vibration
constraint. Violation of a soft constraint does not cause
failure (or very likely failure) of the storage device 100 but
instead will degrade performance (e.g. exceeding a band-
width constraint would slow access to the device) and/or
may cause longer term damage (e.g. exceeding a vibration
constraint is unlikely to cause failure of the storage device
in the short term but might, over a longer period of time,
cause damage that may ultimately lead to failure of the
storage device 100). These constraints (e.g. the power and
cooling constraints and any additional constraints which
may be used, such as a bandwidth constraint resulting from
the interconnect fabric) are managed by the software run-
ning on the server 104 and/or the control logic 112.

Although FIG. 1 shows the server 104 being located
within the storage device 100, in some examples, the server
104 may be located outside the storage device 100 and in
some examples the server 104 may be located remotely from
the storage device 100. Furthermore, although FIG. 1 shows
a single server 104, it will be appreciated that the storage
device 100 may comprise more than one server (e.g. for
redundancy purposes) and where there are multiple servers
all the HDDs 102 may be connected to a single server 104
(with the HDDs being switched to the second server in the
event of server failure) or the HDDs 102 may be split with
a subset being connected to one server and another (disjoint)
subset being connected to another server (where these
subsets may be fixed or may be dynamically changed over
time). In some examples, there may be more than one
interconnect fabric 106 and more than one independent
server 104, with the different interconnect fabrics 106 con-
necting the HDDs 102 to multiple servers or to different
servers. This provides resilience against server and/or inter-
connect fabric failure.

The HDDs 102 are described herein as being active (i.e.
having their platters spinning) or not being active (i.e. with
their platters not spinning) which is also referred to herein as
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the HDD being in standby as the electronics within the HDD
are still powered. It will be appreciated that the HDDs 102
may have more than two states (active/not active), such as
being in transition from not active to active (i.e. where the
platters are spinning up), being in transition from active to
not active (i.e. where the platters are spinning down), being
fully off (i.e. no power to the electronics) and various other
low power states. For the purposes of the following descrip-
tion the active state is considered to include both a state
where the platters are spinning and data is being read/written
and a state where the platters are spinning and data is not
being read/written (which may be referred to as an ‘idle’
state) because both of these states consume a similar amount
of power (e.g. 8 W). The spinning up state consumes a larger
amount of power over a short period of time (e.g. 24 W for
10 seconds) and may be considered as part of the active state
(e.g. for the purposes of power accounting) or separately. In
an example implementation, the state of each HDD may be
tracked as one of three states: standby (or not active),
spinning up and active. It will be appreciated that in other
examples, additional HDD states may also be considered
(e.g. a fourth state of spinning down may also be tracked
where this takes a non-trivial amount of time to complete).

FIG. 2 shows another schematic diagram of an example
storage device 100. This diagram shows an example 3D
arrangement of the HDDs 102 in which each HDD 102 may
be identified by its (x,y,z) coordinate. It will be appreciated
that the HDDs 102 may not be located in a regular grid
within an actual storage device 100; however, this represen-
tation, as shown in FIG. 2, provides a logical representation
of the HDDs 102 for the purposes of the following descrip-
tion.

The HDDs 102 within the storage device 100 may be
arranged, as a result of the device design, into disjoint (or
non-overlapping) subsets which are linked by a power
constraint and in an example, the HDDs 102 may be
arranged in trays 202 where HDDs 102 in a tray 202 have
the same value of x and 7z (and varying values of y) and one
tray is shown as shaded cells in FIG. 2. The power constraint
is set by the maximum amount of power that can be
delivered to a tray. In an example, the power constraint may
specify that only two HDDs may be active within a single
tray and in some examples this constraint may be further
qualified in that only one of the two active HDDs may be in
the spinning up state. Although FIG. 2 shows a storage
device 100 with 35 trays, it will be appreciated that this is
by way of example only and a storage device 100 may
comprise any number of trays. In an example, a storage
device may comprise 72 trays and each tray may comprise
16 HDDs.

The HDDs 102 within the storage device 100 may be
further arranged into disjoint subsets which are linked by a
cooling constraint (e.g. where they are in the same air path
within the cooling system 110). In an example, the HDDs
102 may be arranged in columns 204, where HDDs in a
column have the same value of x and y (and varying values
of z) and one column is shown as shaded cells in FIG. 2. In
an example, the cooling system 110 may force air in at the
front, up through a column and out at the back of the storage
device 100 (as indicated by arrow 206) and so it can be seen
that all the HDDs in column 204 are linked by a cooling
constraint as they are all located on the same cooling path
(i.e. in the same vertical airflow) through the device. In an
example, the cooling constraint may specify that only one
HDD may be active within a single column. Although FIG.
2 shows a storage device 100 with 35 columns, it will be
appreciated that this is by way of example only and a storage
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device 100 may comprise any number of columns. In an
example, a storage device may comprise 96 columns (with
each column comprising 12 HDDs).

As can be seen from FIG. 2, columns and trays are not
disjoint and there is an overlap of one HDD between tray
202 and column 204. The two constraints are therefore not
independent. Furthermore, the two constraints may set dif-
ferent upper limits on the total number of HDDs which may
be active in the storage device 100 at any one time and in
which case, the lower of the two upper limits is used. For
example, in a system comprising 1152 HDDs arranged in
trays of 16 HDDs and columns of 12 HDDs, the power
constraint sets a maximum number of HDDs active at any
time of 144 (2 per tray, with 72 trays) whilst the cooling
constraint sets a maximum number of HDDs active at any
time of 96 (1 per column, with 96 columns) and so the
overall limit on the number of active HDDs at any time in
the storage device is 96.

FIG. 3 shows a schematic diagram of a first example
interconnect fabric 300. This example shows an interconnect
fabric for a storage device comprising two servers 302
where the second server is connected to (or connectable to)
all the HDDs 304, e.g. for redundancy in the case of server
failure. It will be appreciated, however, that for a single
server solution, the elements ringed by the dotted outline
306 may be omitted. This example interconnect fabric 300
uses PCI express (PCle) and comprises a plurality of com-
ponents 308-314 which are physically distributed within the
storage device 100 to reduce the number of cables (to reduce
the possibility of misconnections by humans) by replacing
them with PCB traces, to reduce the length of those PCB
traces (as the PCI signal is degraded as it travels along the
traces), to reduce the length of any cables which are used
(which reduces cost) and to extend (or optimize) the work-
able distance between a server 302 and a HDD 304. The
workable distance is extended through distribution of com-
ponents within the storage device because each PCle com-
ponent reconditions the signal.

As shown in FIG. 3, a server 302 is connected to a server
switch 308 and there is one server switch for each server.
Each server switch 308 is connected to a plurality of
backplane switches 310 (denoted BS)). In the example
shown in FIG. 3 there are 6 backplane switches 310 con-
nected to a server switch 308 and in an example implemen-
tation, this connection (server switch 308 to each backplane
switch 310) may be the only connection which uses cables
rather than PCB traces. A backplane switch 310 connects to
a plurality of tray switches 312 (denoted TS,,) and in the
example shown there are 12 tray switches connected to a
backplane switch 310. It can be seen that where there are two
servers 304, there is no duplication at the tray switch level
of' the interconnect fabric, and each tray switch 312 connects
to two backplane switches 310: one which is connected to
the first server and one which is connected to the second
server. As there are 6 backplane switches 310 (for each
server 302), there are a total of 72 tray switches 312 in the
example shown in FIG. 3. Within a tray there are two SATA
controllers 314 (denoted SC,) and these connect the tray
switch 312 to the individual HDDs 304. As shown in FIG.
3, each SATA controller 314 connects to half of the HDDs
304 in the tray. As there are 72 tray switches in the example
shown in FIG. 3, there are 144 SATA controllers connecting
to a total of 1152 HDDs, with each SATA controller being
connected to 8 HDDs.

The interconnect fabric may provide a bandwidth con-
straint, as can be explained with reference to FIG. 3;
however, in some cases the bandwidth constraint need not be
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6

considered explicitly when determining which HDDs can be
active, for example where if the power and cooling con-
straints are satisfied the bandwidth constraint is always also
satisfied.

In the example shown in FIG. 3, each HDD 304 may have
a 1 Gb/s link to a SATA controller 314, giving a total
capacity at this level in the interconnect fabric of 1152 Gb/s.
At the next level up, each SATA controller 314 may have a
4 Gb/s link to a tray switch 312, giving a total capacity at this
level in the interconnect fabric of 576 Gb/s (half that of the
previous level). Each tray switch 312 may then have a 8 Gb/s
link to a backplane switch 310, giving a total capacity at this
level in the interconnect fabric of 576 Gb/s. Each backplane
switch 310 has a 16 Gb/s link to a server switch 308, giving
a total capacity at this level in the interconnect fabric of 192
Gb/s (one third of the previous level) and each server switch
308 has a 32 Gb/s link to a server 302. Alternatively, each
tray switch 312 may have a 4 Gb/s link to a backplane switch
310 (giving a total capacity at this level of only 288 Gb/s or
half that of the previous level) and each backplane switch
310 may have a 8 Gb/s link to a server switch 308 (giving
a total capacity at this level of only 96 Gb/s, which is one
third of the previous level). Both of these examples clearly
demonstrate that if all 96 HDDs which are permitted by the
cooling and power constraints to be active, are active, there
is insufficient bandwidth within the interconnect fabric 300
to read and/or write to them all. Consequently in this
example, a bandwidth constraint (as a consequence of an
underprovisioned interconnect fabric) may also be consid-
ered when determining which HDDs are to be active at any
one time. As described above, a bandwidth constraint is
considered a soft constraint as it causes congestion and
latency and does not result in the failure of the storage
device.

FIG. 4 shows a schematic diagram of a second example
interconnect fabric 400 and in this example only a single
server 402 is shown; however the fabric may be modified for
use with two servers (e.g. by connecting each of'the top level
multiplexers to both servers). This example interconnect
fabric 400 comprises a tree of SATA multiplexers 404 which
is connected to a small number of SATA ports provided on
the server 402 and uses the hotplug infrastructure within
SATA. In this example, the tree is 6 layers deep, with two
multiplexers 404 at the top level and 486 multiplexers at the
bottom level, which each connect to a plurality of HDDs
406. It will be appreciated that for purposes of clarity not all
the multiplexers 404 or HDDs 406 are shown in FIG. 4. In
this SATA implementation, there is only one active route
through the tree at any time. Those HDDs which are not
active are effectively hot unplugged when they transition
from being active to being not active and they are no longer
visible (or in communication with) the server 402. This
contrasts with the PCle approach (interconnect fabric 300)
shown in FIG. 3 in which there is direct connectivity to each
HDD and this enables pre-emptive powering up of HDDs
(i.e. powering up a set of HDDs while reading from or
writing to another set of HDDs), which is not possible using
the interconnect fabric 400 shown in FIG. 4. Although FIG.
4 shows use of SATA multiplexers 404, in a further example
interconnect fabric, SATA multipliers may alternatively be
used (however this would increase the cost of the intercon-
nect fabric and as SATA multipliers cannot be daisy-chained,
it would limit the number of HDD that could be connected).

As described above, the power and cooling systems
within the storage device 100 described herein (and shown
in FIGS. 1 and 2) are significantly underprovisioned such
that all the HDDs cannot be spun up simultaneously (i.e.
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there is both insufficient power and insufficient cooling). In
standard computing devices, however, the HDDs are auto-
matically spun up on start-up and processes may intermit-
tently spin up HDDs for other purposes (e.g. when scanning
files for viruses, indexing files to allow searching inside
them, checking whether a disk is encrypted, checking disk
failure prediction counters, checking whether a disk has
been formatted in a legacy way, etc). To prevent this in the
storage device described herein, an access (or ‘no access’)
flag may be stored within the server for each HDD and then
software running on the server (e.g. the operating system) is
modified such that when a HDD is marked ‘no access’ then
all operations on that HDD fail. This is shown in the
example flow diagram 500 in FIG. 5.

FIG. 5 is a flow diagram of an example method of
controlling accesses to a HDD. When an IO request for a
HDD is issued, a check is performed to see whether the ‘no
access’ flag for the HDD is set (block 502) and if the flag is
set ("Yes’ in block 502), the 10 request fails (block 504).
However, if the flag is not set ('No' in block 502), the 10
request is handled normally (block 506). At start-up all
non-boot HDDs may have their flags set (indicating ‘no
access’) and HDDs may subsequently have their flags unset/
set as they switch between non active and active states.
Depending on implementation, the flag may be set to either
1 or 0 to indicate ‘no access’. In addition, the HDD driver
may be modified to change how it discovers HDDs during
the boot sequence. Such a modified driver is arranged to
spin-up, probe, identify and then spindown each HDD in
sequence. Existing drivers may perform staggered spin up of
HDDs, but do not spin down one HDD before spinning up
the next HDD.

As described above, the power and cooling (and poten-
tially other) constraints limit the number of HDDs that can
be active within the storage device at any time and software
running on the server and/or control logic is used to control
which HDDs are active (and set corresponding access flags,
where these are used). Referring back to the example storage
device shown in FIG. 2, the HDDs within a storage device
may be represented as a regular grid of cells, with each cell
corresponding to a HDD 102 and each HDD being refer-
enced by an (x,y,z) coordinate. As described above, the
cooling constraint operates within a column 204 and this
may be referred to as a ‘cooling domain’, with two HDDs
that have the same x and y coordinates sharing a cooling
domain. Similarly, the power constraint operates horizon-
tally within a tray and this may be referred to as a ‘power
domain’, with two HDDs that have the same x and z
coordinates sharing a power domain. The term ‘slice’ may be
used to refer to the smallest part of the storage device for
which power and cooling domains are self-contained and
HDDs that have the same x coordinates are in the same slice
and HDDs from two different slices cannot share power or
cooling domains. FIG. 6 is another schematic diagram
showing domains within a storage device 600 and in this
example, a slice 602 is shown separate from the rest of the
storage device. FIG. 6 also shows the power domain 604 and
the cooling domain 606 of a HDD 608 in the slice 602.

In various examples, the HDDs within the storage device
may be divided logically into non-overlapping groups with
each group comprising a plurality of HDDs which can all be
active simultaneously without violating the power and cool-
ing constraints. In such examples, each HDD is a member of
a single group and it will be appreciated that a group does
not comprise all the HDDs that can be active simultaneously
(e.g. multiple groups may be active simultaneously). In an
example implementation, the HDDs may be partitioned into
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logical groups such that each group has the same number of
HDDs (e.g. 16 HDDs) and HDDs of one group can be
cooled and powered together (i.e. they do not violate the
power or cooling constraints). In some examples, there may
be also be a bandwidth (soft) constraint that HDDs of one
group have no bandwidth conflicts within the interconnect
fabric unless they saturate the root of the tree (e.g. the PCle
tree shown in FIG. 3).

Some of the groups will be mutually exclusive because
domains (cooling and/or power) of their HDDs overlap and
these groups may be described as colliding. Groups that are
not colliding may be described as being disjoint and by
grouping HDDs to maximize the disjointness of the HDDs
(i.e. to maximize the probability that any HDD within one
group is not in the same cooling or power domain as a HDD
in another group), the probability that two groups selected at
random can be active simultaneously is increased and the
throughput of the storage device is increased. An example
layout which maximizes group disjointness is one where two
groups are arranged to be either disjoint or to collide fully
(i.e. each HDD of the first group is in the cooling and power
domain of HDDs in the second group).

FIG. 7 shows an example group construction (for 16 HDD
per group) that achieves maximal disjointness. FIG. 7 shows
two groups 702, 704 and HDDs within each group are
placed along a diagonal to avoid in-group collisions. It can
clearly be seen that each HDD in the first group 702 is in
both a power domain and a cooling domain of HDDs in the
second group 704. Taking an example HDD 706 in the first
group 702, it is in the power domain of one HDD 708 in the
second group 704 and in the cooling domain of a second
HDD 710 in the second group. As each group contains more
HDDs than there are power domains (12 power domains
compared to 16 HDDs) in a single slice (and where in this
example there are fewer power domains than cooling
domains, so this is the limiting factor), each group comprises
HDDs from two slices 712, 714 and this example the two
slices are adjacent to each other within the storage device.
Using the example arrangement shown in FIG. 7, it is
possible to build 72 well-formed groups of 16 HDDs. Each
group is fully colliding with 11 groups in the same slice and
can be concurrently spun up with any of the remaining 60
groups.

If the group placement strategy described above is used,
it is a simple operation to identify joint-groups (i.e. groups
that collide): two groups share power and cooling domains
if (and only if) they are located in the same slices. A line of
a group may be defined as the equivalence class that contains
all the groups that are joint with the group and this is shown
in FIG. 8. FIG. 8 is a schematic diagram showing a repre-
sentation of the HDDs within a storage device from above.
Each cell 802 represents a cooling domain and each row 804
represents a slice. Each line is shown by way of shading and
is composed of 12 groups of 16 HDDs that completely
overlap power and cooling domains. Each line has the
properties that: groups from the same line should be sched-
uled sequentially and groups from any two lines can spin up
and be active (e.g. perform 10) concurrently. Referring to
the specific example shown in FIG. 8, each group of any line
can spin up concurrently with any group of the other lines
and any two of the 6 lines can be active concurrently.

In a storage device which comprises two servers which
are active at the same time (rather than switching between
the servers on server failure), the groups may be assigned to
servers in order to prevent inter-server scheduling conflicts
and as shown in FIG. 9 a mapping between slices and servers
may be used. Using a mapping from slice to server is
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beneficial as a slice is self-contained in terms of cooling/
power domains and as shown in FIG. 9, lines may be
re-arranged so that any slice will belong to exactly one
server. Comparing FIGS. 8 and 9 it can be seen that in the
multi-server scenario of FIG. 9, line 1 wraps from the first
slice to the third slice (instead of the sixth slice) in order that
the first three slices can be mapped to the first server.
Similarly, line 4 wraps from the fourth slice to the sixth slice
(instead of the third slice).

Although the examples described above show groups of
16 HDDs, in other examples different sizes of groups may
be used (i.e. different numbers of HDDs). In some examples,
the size of a group may be selected such that it divides
evenly into (i.e. is a factor of) the maximum number of
concurrently active disks (e.g. is a factor of 96 in many of
the examples described herein), i.e. such that an integer
number of groups can be active concurrently, as this
improves efficiency. Spinning up part of a group (e.g. half a
group) is less efficient and more complex to control than
spinning up only complete groups as any 10s will require the
entire group to be active. Smaller group sizes (i.e. groups
comprising a smaller number of HDDs) improves schedul-
ing performance because the number of groups is higher and
the scheduler has more freedom to choose which group to
schedule next (see discussion of scheduling below with
reference to FIGS. 12 and 13). However, small groups offer
less throughput per group (and therefore per operation) and
incur a larger overhead where erasure coding and striping (as
described below) is used. For a one server solution (i.e.
where only one server is operating at any time) with the
architecture described above (72 trays, each comprising 16
HDDs, giving a total of 1152 HDDs), reasonable group sizes
may include 16 HDDs (6 active groups at any time), 24
HDDs (4 active groups at any time), 32 HDDs (3 active
groups) or 48 HDDs (2 active groups). For a two server
scenario (and still with an architecture comprising 72 trays
of' 16 HDDs), there may be 16 HDD:s in a group (3 spinning
groups per server) or 24 HDDs (2 groups per server). It will
be appreciated that for other architectures, different group
sizes may be used.

FIG. 10 shows flow diagrams of example methods of
writing data to a storage device as described herein. The first
example method 1000 uses the concept of groups of HDDs
as described above. As shown in method 1000, a burst of
data which is to be written to the HDDs is divided (prior to
being presented to the server) into portions, which may be
referred to as ‘extents’, and these extents are received by the
server (block 1002). Extents may be of a variable size (e.g.
within a range defined by a minimum and maximum size)
and each extent may, for example, be 1 GB (or larger) in
size. Error correction is then added to each extent (block
1004) and any suitable error correction technique may be
used. This error correction may be added by the server or an
external party. In an example, erasure coding may be used
and in other examples, other methods, such as parity checks,
may be used. Each extent is then written to the HDDs from
a single group (block 1006). This means that when reading
the extent, it is guaranteed that the entire extent can be read
simultaneously and it will not be necessary to switch
between groups (i.e. by transitioning a first group to being
non active and spinning up the platters of the HDDs in a
second group) in the middle of reading an extent (which
would add considerable latency).

FIG. 10 also shows a more detailed example method 1010
of writing data to a storage device described herein. In this
method 1010, a single extent is divided into fixed size stripes
(block 1012) and each stripe is then split into a fixed number,
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k, of blocks (block 1014), where k is an integer. Depending
on the error correction technique used, j blocks may be
added to encode redundancy information for each stripe
(block 1016), where j is an integer, such that each stripe now
comprises (k+j) blocks. A block from each stripe is then
written to a different one of (k+j) HDDs from the same group
(block 1018). In this way, all blocks across all stripes are
written to the same (k+j) HDDs and as in the first method
1000, each extent (or portion) is written to HDDs from a
single group.

The second method 1010 may alternatively be described
in terms of ‘stripe stacks’. Having added the j redundancy
blocks (in block 1016), blocks with the same offset in each
stripe are assembled into stripe stacks (block 1020). For
example, if there are m stripes and a first stripe comprises
(k+j) blocks denoted B, |, B, ,, . . ., B, ,, and the m”
stripe comprises (k+j) blocks denoted B,,;, B,,», . . . ,
B, (kv then one stripe stack comprises m blocks B, ,,

215 + + - » B,,; and another stripe stack comprises blocks
B, Bss, ..., B, etc. As can be seen, each stripe stack
comprises m blocks, with the x? stripe stack comprising the
x™” block from each of the m stripes. Each stripe stack is then
written to a different HDD within a group (block 1022).

FIG. 10 also shows a third example method 1030 of
writing data to a storage device described herein. While the
second example method 1010 may be referred to as ‘strip-
ing’, this third example method 1030 may be referred to as
‘segmenting’ and this method 1030 does not use the concept
of groups (unlike methods 1000 and 1010). In this example
method 1030, the extent is divided into n segments (block
1032) and p redundancy segments are added (block 1034).
Each segment within the extent is then stored on a different
HDD (block 1036), i.e. one segment on each of (n+p) HDDs.
In this example the (n+p) HDDs do not necessarily belong
to the same group, but instead the size of the segment is
selected such that reading it from a HDD would take at least
10 seconds (i.e. at least the time taken to spin up a HDD) and
the HDD storing segment i+1 should be spinnable concur-
rently with the HDD storing segment i. This means that
when reading an extent which has been written using
method 1030, the HDD storing segment 1 from an extent is
initially active and in parallel the HDD storing segment 2
from the same extent is spinning up. When segment 2 is
being read, the HDD storing segment 1 is spun down (i.e. the
platter is no longer being driven) and the HDD storing
segment 3 is spinning up, etc.

FIG. 11 shows a schematic diagram of striping (as shown
in method 1010) compared to segmenting (as shown in
method 1030). This diagram shows the situation for k=1,
=1, n=1 and p=1. Segmenting is more flexible for the
scheduler (which controls writes to the HDDs) than striping
because the constraint is that HDDs storing two consecutive
segments must be spinnable together (rather than all the
HDDs having to belong to one group). However, the
throughput of segmenting is limited to the bandwidth of one
HDD, scheduling may be more complex as there are poten-
tially many conflicting parallel operations required to satu-
rate the storage device bandwidth and it requires DRAM
proportional to the maximum extent size. Striping, in con-
trast, provides a high throughput and scheduling is less
complex because it is quasi-oblivious to the power and
cooling constraints (as these are taken care of by the group
definitions); however, there is less flexibility for the sched-
uler as all the HDDs storing the extent must be from one
group (and hence spinnable together).

When writing data to groups of HDDs in the first two
example methods 1000, 1010 (e.g. as in blocks 1006 and
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1018) the data (i.e. the extents) may be fairly spread across
all groups (“even fill”) or one group may be filled with data
before filling the next one (“sequential fill”). In one example
implementation, even fill of groups is used. Even fill results
in equal loading of HDDs (which makes maintenance easier)
and there is less data to rebuild in the case of HDD failure
(as a HDD is unlikely to be completely filled with data);
however there may be a lower throughput (than for sequen-
tial fill) when the storage device is lightly loaded (i.e. each
group is storing a small amount of data) because there are
fewer 10 per active HDD. In contrast, sequential fill pro-
vides more 10s per HDD in a lightly loaded storage device
(as the data will be concentrated in a small number of
groups), but some HDDs may be inactive for very long
periods and this may impact HDD reliability.

As well as controlling writes to the HDDs, a scheduler
within the server controls read operations on the HDDs.
FIG. 12 shows a flow diagram of an example method 1200
of scheduling read operations within a storage device. This
method uses the concept of groups and therefore may be
used in combination with one of methods 1000 and 1010 for
writing data. On receipt of a burst of read operations (block
1202), the scheduler orders operations into sets which oper-
ate on the same group of HDDs (block 1204) and then
schedules sets of operations in an order which maximizes
throughput (block 1206), e.g. by minimizing switching
between groups. In some examples, operations may be
flagged with a priority level, in which case the sets of
operations may be scheduled on the basis of both throughput
and priority (in block 1206).

In order to maximize throughput, sets of operations may
be ordered (in block 1206) to allow groups to be spun up,
while attempting to maintain the interconnect fabric’s
throughput. For example, if it takes 10 seconds to spin up a
HDD, each set of operations may be arranged to provide at
least 10 seconds of IO operations in order that another group
may be spun up whilst a set of operations is being per-
formed. For example, between t=t, and t=t,+10, operations
are performed on group A and HDDs in group B are spinning
up, then between t=t;+10 and t=t;+20, operations are per-
formed on group B and HDDs in group C are spinning up,
etc. Sets of operations which operate on disjoint groups can
be scheduled in parallel, as long as there is sufficient
bandwidth in the interconnect fabric (i.e. as long as a
bandwidth constraint is not violated). For example, between
t=t, and t=t,+10, operations are performed on groups A and
D and HDDs in groups B and E are spinning up, then
between t=t;+10 and t=t, +20, operations are performed on
groups B and E and HDDs in groups C and F are spinning
up, etc, where groups A and D, B and E and C and F are
disjoint. As the bandwidth constraint is not a hard constraint,
in some examples, underprovisioned bandwidth may be
shared between groups such that each group experiences a
bandwidth restriction. For example if there are two opera-
tions which each use 18 GB/s of bandwidth and the total
available bandwidth is only 32 Gb/s, the two operations may
be served concurrently at 16 Gb/s, rather than serving just a
single operation at the full bandwidth of 18 Gb/s.

Referring back to FIGS. 8 and 9, if the groups of HDDs
are arranged in lines, the scheduler may be aware of these
lines and which lines can execute concurrent 10s (as
described above). Consequently, the scheduler (in block
1206), may group sets of operations based on this line
knowledge and the following criterion may also be used: IOs
from two groups of the same line are be separated by at least
10 seconds worth of 10 from groups belonging to other
lines. This enables the second group from the same line to

15

20

30

40

45

12

be spun up during the separation period. It will be appreci-
ated that although the spin up time is assumed to be 10
seconds, the same principle may be applied if the spin up
time is a longer or shorter period of time. In scheduling
groups (in block 1206), the scheduler may, for example, use
an inexpensive greedy algorithm to determine which group
to schedule next in order to minimize idle time.

The scheduling of operations (in block 1206) may apply
within a burst of read operations (as received in block 1202)
or alternatively a window (which may be defined in terms of
time or number of operations) may be used to define how
may operations in a queue of read operations may be
considered for rescheduling at the same time (e.g. a window
of 100 or 1000 operations). Where such a window is used,
the method of FIG. 12 may be applied even where read
operations are not received in bursts (i.e. block 1202 omit-
ted) and in such examples, the reordering and rescheduling
(in blocks 1204 and 1206) may be applied on a window of
received read operations which are held in a queue.

Where a queue of read operations is reordered (in block
1206) any delay (e.g. over a threshold delay) may be fed
back to the requester (i.e. the entity sending the read
request).

Although the description of FIG. 12 above relates to read
operations, in some examples, the same method may be
applied to delete operations.

FIG. 13 shows an example scheduling timeline 1300 for
a storage device comprising groups of 16 HDDs and the
PCle interconnect fabric shown in FIG. 3. With groups of 16
HDDs, 2 groups are able to fully use the PCle bandwidth,
therefore at any given moment, 2 groups are doing 1O. In the
scheduling timeline 1300, at each step the scheduler selects
groups to spin up that have enough IO to overlap the
transition between two joint (i.e. colliding) groups, which as
described may take about 10 seconds.

Many of the methods described above rely on the HDDs
within the storage device being logically arranged into fixed
groups, where HDDs in a group can be active at the same
time. In some examples, however, there may be no fixed
groups and instead the set of HDDs which are active at any
time may be determined by the scheduler within the server
(or another element within the server) based on power
constraints, cooling constraints and in some examples some
other constraints (e.g. a vibration constraint). Such examples
use the concept of domains (as described above with refer-
ence to FIG. 2), where a domain is a set of HDDs, and a set
of constraints that hold on the domain. For example, a
cooling domain has a constraint expressed in Watts, as does
a power domain. A single HDD is a member of multiple
domains.

Each of the per-domain constraints is mapped to a set of
HDD-orientated constraints, i.e. a set of HDD states that can
be tolerated by the domain. In the examples above, each
HDD is described as being in one of two, or in some
examples three, states: not active (i.e. platters not spinning,
but electronics powered), spinning up (i.e. platters in process
of transitioning from not spinning to spinning at correct
speed) and active (i.e. platters spinning). As described
above, in some examples, there may be more states consid-
ered, such as differentiating, for a HDD with the platters
spinning between when data is and is not being read/written.
For the power domain, the power draw of each state being
considered within the system is known and similarly, for the
cooling domain, the cooling load of each state is known. For
example, a HDD draws 0.7 W when in standby (or non
active state, i.e. electronics powered, platters not spinning),
8 W when active (platters spinning) and 24 W for 10 seconds
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when the platters are spinning up. A budget can therefore be
expressed for each domain as the set of possible states that
can be supported by the domain. Referring back to a
previous example architecture, the power budget for a
domain may be two active HDDs per power domain or one
active HDD and one HDD spinning up and the cooling
budget may be one active or spinning up HDD per cooling
domain. The budget may, for example, be expressed as a
state table or finite state machine.

FIG. 14 is a flow diagram of an example method of
reading data from the storage device where domains are
used (as described above). In this example, when a read
request for a file is received (block 1402), the scheduler
within the server determines the set of HDDs that need to be
spinning in order to read the file (block 1404). This set is
likely to be different from the currently spinning HDDs and
so the scheduler then determines a migration sequence from
the current set of spinning HDDs to the required set of
spinning HDDs (which may be referred to as the ‘target
configuration’), where the migration sequence does not pass
through any intermediate set of HDDs which violates any of
the domain constraints (block 1406). This is therefore an
optimization problem to be solved which selects the set of
hardware configuration states that need to be passed through
in order to get to a configuration where the file can be read.
Once the migration sequence is determined, it can be imple-
mented (block 1408) and the file read (block 1410).

In implementing the method of FIG. 14, a burst of read
operations may be considered (e.g. as described above with
reference to FIG. 12) and in which case the migration
sequence may be determined to optimize the throughput for
the burst rather than a single request. In such an example, the
time taken to spin up platters (e.g. 10 seconds) may be taken
into consideration in the same way as described previously
and 10 requests may be grouped into operations on common
sets of HDDs which last at least 10 seconds.

The scheduling shown in FIGS. 12 and 13 and described
above an operation (e.g. accessing a set of stripe stacks) is
associated with a set of HDDs which need to be accessed.
Where two operations do not conflict (i.e. there is no overlap
between sets of HDDs) they can execute in parallel. If,
however, all the HDDs are in conflict, operations are pro-
cessed sequentially. If, however, only a fraction of the HDDs
conflict, two different scheduling mechanisms may be used
and in the methods described above, a mechanism which
may be referred to as ‘non-preemptive scheduling’ may be
used.

With ‘non-preemptive scheduling’, 100% of one of the
two conflicting operations is processed and the second one
is stalled (even if the two operations have as few as one
HDD in conflict). The second operation is processed (in its
entirety) when the conflict has been resolved (e.g. when the
first operation has been completed). In contrast for ‘preemp-
tive scheduling’, 100% of one of the two conflicting opera-
tions is processed and the non-conflicting n % of the other
operation is processed in parallel, with the remaining (100-
n) % being finished later.

In preemptive scheduling, which may be used with the
method shown in FIG. 14 the scheduling is performed at
HDD granularity: the scheduler decides which HDD to spin
up next regardless of which operations are currently pro-
cessed. The scheduler is domain-aware and schedules HDDs
that are not in conflict. For non-preemptive scheduling,
however, the scheduler either spins up all the HDDs required
for an operation or delays the operation if this is not possible.
The scheduler is domain-oblivious and focuses on opera-
tion-conflict avoidance.
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Preemptive scheduling potentially has increased schedul-
ing flexibility but this results in increased scheduling com-
plexity. Preemptive scheduling also potentially has higher
throughput but higher latency per operation as several spin
up times may be required per operation. Preemptive sched-
uling also uses large in-memory buffers at the server to store
pending operations, which increase the cost of the storage
device and decreases its reliability. Non-preemptive sched-
uling, in contrast, provides guarantees in terms of through-
put per operation and has low memory requirements.

In addition to considering power and cooling domains in
any of the methods described above (e.g. in any of the
methods shown in FIGS. 10, 12 and 14), other constraints
(e.g. soft constraints) and other domains may also be taken
into consideration. Soft constraints are those which if vio-
lated yield sub-optimal performance but will not result in
hardware failure (as is the case for hard constraints such as
the power and cooling constraints). The soft constraints may
be expressed based on domains, for example failure and
physical locality. The failure domain captures sets of HDDs
and the likelihood that they will concurrently fail. The
physical locality captures the locality properties of the
interconnect fabric and may be expressed in terms of func-
tions that given two HDDs returns a value V between 0 and
1. The value, V, represents the interference between the two
HDDs (1=no interference, while a value less than 1 repre-
sents the strength of the relationship). Given a nominal
bandwidth A per HDD, the expected maximum throughput
of both HDDs are reading/writing concurrently is VxA.

FIG. 15 illustrates various components of an exemplary
computing-based device 1500 which may be implemented
as any form of a computing and/or electronic device, and
which may operate as a server within the storage device
described herein.

Computing-based device 1500 comprises one or more
processors 1502 which may be microprocessors, controllers
or any other suitable type of processors for processing
computer executable instructions to control the operation of
the device in order to operate as a server and control
read/write operations to the HDDs in the storage device. In
some examples, for example where a system on a chip
architecture is used, the processors 1502 may include one or
more fixed function blocks (also referred to as accelerators)
which implement a part of the method of controlling the
HDDs in hardware (rather than software or firmware).
Alternatively, or in addition, the functionality described
herein can be performed, at least in part, by one or more
hardware logic components. For example, and without limi-
tation, illustrative types of hardware logic components that
can be used include Field-programmable Gate Arrays (FP-
GAs), Program-specific Integrated Circuits (ASICs), Pro-
gram-specific Standard Products (ASSPs), System-on-a-
chip systems (SOCs), Complex Programmable Logic
Devices (CPLDs).

Platform software comprising an operating system 1504
or any other suitable platform software may be provided at
the computing-based device to enable application software
1506 and scheduler 1508 to be executed on the device. The
computer executable instructions may be provided using any
computer-readable media that is accessible by computing
based device 1500. Computer-readable media may include,
for example, computer storage media such as memory 1510
and communications media. Computer storage media, such
as memory 1510, includes volatile and non-volatile, remov-
able and non-removable media implemented in any method
or technology for storage of information such as computer
readable instructions, data structures, program modules or
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other data. Computer storage media includes, but is not
limited to, RAM, ROM, EPROM, EEPROM, flash memory
or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other non-transmission medium that
can be used to store information for access by a computing
device. In contrast, communication media may embody
computer readable instructions, data structures, program
modules, or other data in a modulated data signal, such as a
carrier wave, or other transport mechanism. As defined
herein, computer storage media does not include communi-
cation media. Therefore, a computer storage medium should
not be interpreted to be a propagating signal per se. Propa-
gated signals may be present in a computer storage media,
but propagated signals per se are not examples of computer
storage media. Although the computer storage media
(memory 1510) is shown within the computing-based device
1500 it will be appreciated that the storage may be distrib-
uted or located remotely and accessed via a network or other
communication link (e.g. using communication interface
1512).

In some examples the computing-based device 1500 may
be managed remotely and in which case, the communication
interface 1512 may be arranged to receive management
instructions from a remote management entity and to pro-
vide status/update information to the remote management
entity.

The memory 1510 may further comprise a data store 1514
which may be used to store access flags for each HDD in the
storage device (e.g. as described above with reference to
FIG. 5).

The computing-based device 1500 also comprises a server
switch 1516 arranged to output signals to each of the
backplane switches via an interconnect fabric (e.g. as
described above with reference to FIG. 3 or 4). These signals
control the state of the HDDs and also are used when writing
to or reading from an HDD. Alternatively, where the SATA
based interconnect fabric 400 is used, the server switch 1516
is replaced by an HDD controller, which provides a plurality
of SATA ports each connecting to a SATA multiplexer 404
at the top level of the tree.

The computing-based device 1500 may also comprise an
input/output controller arranged to output display informa-
tion to a display device which may be separate from or
integral to the computing-based device. The display infor-
mation may provide a graphical user interface. The input/
output controller may also be arranged to receive and
process input from one or more devices, such as a user input
device (e.g. a mouse, keyboard, camera, microphone or
other sensor). In some examples the user input device may
detect voice input, user gestures or other user actions and
may provide a natural user interface (NUI). In an embodi-
ment the display device may also act as the user input device
if it is a touch sensitive display device. The input/output
controller may also output data to devices other than the
display device.

Any of the input/output controller, display device and the
user input device (where provided) may comprise NUI
technology which enables a user to interact with the com-
puting-based device in a natural manner, free from artificial
constraints imposed by input devices such as mice, key-
boards, remote controls and the like. Examples of NUI
technology that may be provided include but are not limited
to those relying on voice and/or speech recognition, touch
and/or stylus recognition (touch sensitive displays), gesture
recognition both on screen and adjacent to the screen, air
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gestures, head and eye tracking, voice and speech, vision,
touch, gestures, and machine intelligence. Other examples
of NUI technology that may be used include intention and
goal understanding systems, motion gesture detection sys-
tems using depth cameras (such as stereoscopic camera
systems, infrared camera systems, RGB camera systems and
combinations of these), motion gesture detection using
accelerometers/gyroscopes, facial recognition, 3D displays,
head, eye and gaze tracking, immersive augmented reality
and virtual reality systems and technologies for sensing
brain activity using electric field sensing electrodes (EEG
and related methods).

In the above examples, the constraints are set by the
design of the storage device and hence may be considered
fixed. Where groups are used, these are determined by the
constraints and may therefore also be considered fixed. In
the event of hardware failure, however, the server may be
arranged to modify the constraints (and hence groups, where
they are used) in order that the storage device can continue
to function, even if performance may be degraded. For
example, a storage device may comprise 6 power supply
units, each powering a number of trays (e.g. powering 12
trays) and where a power supply unit fails, another power
supply unit within the storage device may be shared between
a larger number of trays (e.g. between 24 trays) and the
constraints and/or groups may be dynamically adapted to
respond to this. The constraints/groups may also be modified
(e.g. dynamically adapted) in event of replacing any of the
hardware (e.g. the HDDs) with more efficient hardware (e.g.
the power and/or cooling constraints associated with a more
efficient HDD may be different, enabling larger or different
size groups).

In the event of hardware failure, there may be one or more
recovery mechanisms operational within the storage device
in addition to, or instead of, adapting the constraints and/or
groups. Examples include: maintaining spare capacity
within a group to handle HDD f{failure (e.g. each group
comprises one or two more HDDs than are used for each
operation), maintaining a spare group of HDDs for redun-
dancy purposes (e.g. which can be switched in to replace a
group experiencing HDD failure), and spreading load across
other groups.

Although the present examples are described and illus-
trated herein as being implemented in a storage device
comprising one or two servers, the system described is
provided as an example and not a limitation. As those skilled
in the art will appreciate, the present examples are suitable
for application in a variety of different types of storage
systems, for example, multiple storage devices may be
co-located (e.g. in a data center) and there may be some
sharing of resources (e.g. power supply units) in the event of
failure. Furthermore, although two example interconnect
fabrics 300, 400 are described above, alternative designs of
interconnect fabric maybe used.

As described above, in some examples the server 104 may
be located remotely from the rest of the storage device 100.
In such examples, control logic 112 may be provided within
the storage device 100 and arranged to provide control
signals to the HDDs 102 via the interconnect fabric 106 in
response to signals received from the remote server.

The storage device described above is intended for mini-
mal read/write access to the HDDs and therefore is config-
ured to keep the majority of HDDs in a sleeping (i.e. not
active) state where they consume minimal power (the elec-
tronics are powered but the platters are not spinning) The
HDDs are only brought out of this state to initially write the
data, check the data for integrity or to retrieve the data;
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however, since the data type for which the storage device is
designed is archival, retrieval operations are expected to be
minimal Consequently, the storage device may be designed
to use minimal power and associated cooling. For the
example configuration comprising 1152 HDDs (as described
above), the storage device may be designed to use 2.4 kW
or less than 25% of existing storage devices (with similar
storage capacity). This requires less power distribution
(within the storage device), smaller fans and enables a
greater packing density of HDDs due a lower volume of
cooling (e.g. forced air) going through the storage device. As
described above, the storage devices described herein are
underprovisioned such that they are not capable of providing
sufficient power and/or cooling for all of the HDDs in the
device (i.e. they physically cannot spin up all the HDDs
concurrently). In an example, the storage device may pro-
vide sufficient power and cooling for only around 10% or
less (e.g. 8.3%) of the HDDs to be active at any one time.
This underprovisioning reduces the power consumption and
hence operating expense of the device and the reduced
bandwidth of the device may also contribute to a further
reduction in the operating costs. The higher packing density
of HDDs which is enabled and the reduction in the power
and cooling infrastructure contributes to lower initial costs
of the storage device to buy (e.g. lower capital expenditure).

The storage device described above provides an example
of s device where the physical hardware and software are
designed together such that the software (or control logic)
prevents the storage device from entering states in which a
set of HDDs are active which will cause failure of the overall
device due to insufficient power and/or cooling.

The term ‘computer’ or ‘computing-based device’ is used
herein to refer to any device with processing capability such
that it can execute instructions. Those skilled in the art will
realize that such processing capabilities are incorporated
into many different devices and therefore the terms ‘com-
puter’ and ‘computing-based device’ each include PCs,
servers, mobile telephones (including smart phones), tablet
computers, set-top boxes, media players, games consoles,
personal digital assistants and many other devices.

The methods described herein may be performed by
software in machine readable form on a tangible storage
medium e.g. in the form of a computer program comprising
computer program code means adapted to perform all the
steps of any of the methods described herein when the
program is run on a computer and where the computer
program may be embodied on a computer readable medium.
Examples of tangible storage media include computer stor-
age devices comprising computer-readable media such as
disks, thumb drives, memory etc and do not include propa-
gated signals. Propagated signals may be present in a
tangible storage media, but propagated signals per se are not
examples of tangible storage media. The software can be
suitable for execution on a parallel processor or a serial
processor such that the method steps may be carried out in
any suitable order, or simultaneously.

This acknowledges that software can be a valuable, sepa-
rately tradable commodity. It is intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It is also
intended to encompass software which “describes” or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as is used for designing
silicon chips, or for configuring universal programmable
chips, to carry out desired functions.

Those skilled in the art will realize that storage devices
utilized to store program instructions can be distributed
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across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of
the software as needed, or execute some software instruc-
tions at the local terminal and some at the remote computer
(or computer network). Those skilled in the art will also
realize that by utilizing conventional techniques known to
those skilled in the art that all, or a portion of the software
instructions may be carried out by a dedicated circuit, such
as a DSP, programmable logic array, or the like.

Any range or device value given herein may be extended
or altered without losing the effect sought, as will be
apparent to the skilled person.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages. It will
further be understood that reference to ‘an’ item refers to one
or more of those items.

The steps of the methods described herein may be carried
out in any suitable order, or simultaneously where appro-
priate. Additionally, individual blocks may be deleted from
any of the methods without departing from the spirit and
scope of the subject matter described herein. Aspects of any
of the examples described above may be combined with
aspects of any of the other examples described to form
further examples without losing the effect sought.

The term ‘comprising’ is used herein to mean including
the method blocks or elements identified, but that such
blocks or elements do not comprise an exclusive list and a
method or apparatus may contain additional blocks or ele-
ments.

The term ‘subset’ is used herein to refer to a proper subset,
i.e. such that a subset is not equal to the set and necessarily
excludes at least one member of the set.

It will be understood that the above description is given by
way of example only and that various modifications may be
made by those skilled in the art. The above specification,
examples and data provide a complete description of the
structure and use of exemplary embodiments. Although
various embodiments have been described above with a
certain degree of particularity, or with reference to one or
more individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiments
without departing from the spirit or scope of this specifica-
tion.

The invention claimed is:

1. An electronic storage system comprising:

a plurality of storage devices, each storage device having
an active state and a non active state;

the plurality of storage devices being arranged logically
into groups, each group comprising a plurality of
storage devices capable of being in an active state
concurrently;

each storage device belonging to a cooling domain and a
power domain, a cooling domain comprising storage
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devices linked by a cooling constraint and a power
domain comprising storage devices linked by a power
constraint;

a power supply system capable of providing sufficient
power for only a subset of the plurality of storage
devices to be in an active state concurrently;

a cooling system provisioned to provide sufficient cooling
when operating for only a subset of the plurality of
storage devices to be in an active state concurrently;
and

a control mechanism arranged to dynamically control
which of the plurality of storage devices are in an active
state.

2. The electronic storage system according to claim 1,
wherein each of the plurality of storage devices has a
maximum bandwidth in the active state.

3. The electronic storage system according to claim 1,
wherein the control mechanism comprises at least one of
software running on a server and control logic.

4. The electronic storage system according to claim 1,
further comprising an interconnect fabric connecting the
plurality of storage devices and a server, the interconnect
fabric comprising a plurality of SATA controllers and PCle
switches, wherein each of the plurality of storage devices is
connected to the server via a SATA controller and one or
more PCle switches arranged in a tree structure and wherein
the PCle switches are physically distributed within the
electronic storage system.

5. The electronic storage system according to claim 1,
further comprising an interconnect fabric connecting the
plurality of devices and a server, the interconnect fabric
comprising a plurality of SATA multiplexers arranged in a
tree structure.

6. The electronic storage system according to claim 1,
further comprising a server comprising a data store arranged
to store a ‘no access’ flag associated with each of the
plurality of storage devices and when set, a ‘no access’ flag
causes all 1O requests on a storage device to fail.

7. The electronic storage system according to claim 1,
wherein the cooling constraint corresponds to characteristics
of the cooling system and the power constraint corresponds
to characteristics of the power supply system and wherein
each group comprises a plurality of storage devices in
non-overlapping cooling domains and non-overlapping
power domains.

8. The electronic storage system according to claim 7,
wherein the plurality of storage devices are arranged logi-
cally into groups such that each group comprises a plurality
of storage devices in non-overlapping cooling domains and
non-overlapping power domains and wherein groups are
arranged to be either fully colliding or disjoint, wherein two
groups are fully colliding if each storage device in a first
group is a member of the same cooling and power domain
as storage devices in a second group and two groups are
disjoint if each storage device in a first group is not a
member of the same cooling or power domain as any storage
device in a second group.

9. The electronic storage system according to claim 1,
further comprising a server comprising a scheduler arranged
to:

receive a burst of data to be written to the electronic
storage system divided into portions;

add error correction data to each portion; and

write each portion to storage devices from a single group.

10. The electronic storage system according to claim 1,
wherein each portion is divided into a plurality of stripes and
each stripe is divided into a plurality of blocks, and wherein
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adding error correction to each portion comprises: adding
one or more blocks comprising redundancy information to
each stripe and wherein writing each portion to storage
devices from a single group comprises:

for each stripe, writing one block from the stripe to a

different one of the storage devices from the single
group.

11. The electronic storage system according to claim 10,
wherein for each stripe, writing one block from the stripe to
a different one of the storage devices from the single group
comprises:

assembling a sequence of blocks comprising one block

from each stripe; and

writing each sequence of blocks to a separate storage

device from the single group.

12. The electronic storage system according to claim 1,
further comprising a server comprising a scheduler arranged
to:

reorder a plurality of operations into sets of operations

operating on the same group of storage devices, the
operations comprising one or more of read, write and
delete operations; and

schedule sets of operations in an order which maximizes

throughput of the electronic storage system.

13. The electronic storage system according to claim 12,
wherein the scheduler is further arranged to receive a burst
of operations and to perform reordering on the burst of
operations.

14. The electronic storage system according to claim 12,
wherein the scheduler is arranged to perform reordering on
a subset of operations in a queue of operations, wherein the
subset of operations is defined by a window and wherein the
window has a length specified in terms of a number of
operations or a period of time.

15. The electronic storage system according to claim 12,
wherein the scheduler is arranged to schedule sets of opera-
tions in an order which minimizes switching between groups
of storage devices.

16. The electronic storage system according to claim 1,
further comprising a server comprising a scheduler arranged
to:

receive a burst of data to be written to the electronic

storage system divided into portions;

divide each portion into a plurality of segments;

add one or more error correction segments; and

write each segment to a different storage device from a

single group.

17. The electronic storage system according to claim 1,
wherein each storage device belongs to a cooling domain
and a power domain, a cooling domain comprising storage
devices linked by a cooling constraint and a power domain
comprising storage devices linked by a power constraint, the
cooling constraint corresponding to characteristics of the
cooling system and the power constraint corresponding to
characteristics of the power supply system,

the electronic storage system further comprising a server

comprising a scheduler arranged to:

identify a subset of the storage devices storing data
corresponding to a read request;

determine a migration path from a current configuration
comprising those storage devices in an active state to
a target configuration comprising the identified sub-
set of storage devices in active state via a plurality of
intermediate configurations, wherein each configu-
ration satisfies all power and cooling constraints; and
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migrating the current configuration of the electronic
storage system to the target configuration via the
plurality of intermediate configurations.

18. A method of operating an electronic storage system
comprising a plurality of storage devices and insufficient
cooling and power infrastructure for all of the storage
devices to be in an active state concurrently, wherein the
plurality of storage devices are arranged logically into
groups, each group comprising a plurality of storage devices
capable of being in the active state concurrently, the method
comprising:

reordering a plurality of operations into sets of operations
operating on the same group of storage devices; and

scheduling sets of operations in an order which maxi-
mizes throughput of the electronic storage system.

19. An electronic storage system comprising:

a plurality of storage devices, each storage device having
an active state and a non active state, and the plurality
of storage devices being arranged logically into groups,
each group comprising a plurality of storage devices
capable of being in an active state concurrently;
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the plurality of storage devices being arranged logically
into groups, each group comprising a plurality of
storage devices capable of being in an active state
concurrently;

each storage device belonging to a cooling domain and a
power domain, a cooling domain comprising storage
devices linked by a cooling constraint and a power
domain comprising storage devices linked by a power
constraint;

a power supply system capable of providing sufficient
power for only a subset of the storage devices to be in
an active state concurrently;

a cooling system provisioned to provide sufficient cooling
when operating for only a subset of the storage devices
to be in an active state concurrently; and

a control mechanism arranged to dynamically control
which groups of storage devices are in an active state
according to any IO requests received by the server.

20. The electronic storage system according to claim 1

wherein the subset comprises no more than 10% of the
plurality of storage devices.
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